If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-16t^2+76=0
a = -16; b = 0; c = +76;
Δ = b2-4ac
Δ = 02-4·(-16)·76
Δ = 4864
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{4864}=\sqrt{256*19}=\sqrt{256}*\sqrt{19}=16\sqrt{19}$$t_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-16\sqrt{19}}{2*-16}=\frac{0-16\sqrt{19}}{-32} =-\frac{16\sqrt{19}}{-32} =-\frac{\sqrt{19}}{-2} $$t_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+16\sqrt{19}}{2*-16}=\frac{0+16\sqrt{19}}{-32} =\frac{16\sqrt{19}}{-32} =\frac{\sqrt{19}}{-2} $
| 10x+8+12x+10=180 | | 4u-u-2u=15 | | 2(4x-5)=79 | | 25.24=5y+3.39+2y | | 3/4x-9=15(x-1) | | (2x-5)(x+11)=0 | | 13j+2j-16j+4j+14j=18 | | 7y+17=3y-10 | | -10y+(-6)=-36 | | 13=g-29 | | 3/4(x+20)=2+1/2(x-2) | | -3x+16=3x-8 | | (11)(n)=143 | | 12-7+5=3x-8x+9x | | 5/100x=8 | | -3x+16=3x- | | 8g-6g-g=20 | | 5x-17=3x+36 | | 2y+3-2(-6y-2)=4(y-2) | | 8^2+3x=8x+4^3 | | 3/4x-9=15x-15 | | 16f+24=8(2f+5) | | -2y-6=9y+27 | | 3.5=6b=-0.5=6b | | 3(s+6)2−14(s+6)=5 | | 4(3x−1)+9−2x=2x+5+8x | | -39=1/2(10x-18)=16 | | 39(1/5)=9/5c+32 | | 7p+3p+2p-10p=18 | | -3(y-5)=60 | | 55,000+2,500x=62,000+2,000x | | 2/3|k|+5=7 |